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Abstract: In this research, based on the ultra-local model, a novel compound model-free
control strategy with an intelligent Proportional-Integral and super-twisting Sliding Mode Control
(MFiPISTSMC) strategy for permanent magnet synchronous motor (PMSM) drives is proposed. Firstly,
an intelligent Proportional-Integral (iPI) control strategy is designed for motor speed regulation.
Secondly, a super-twisting Sliding Mode Control (STSMC) strategy is constructed based on the
ultra-local model of PMSM. At the same time, the unknown term of the ultra-local model of PMSM is
estimated by a Linear Extended State Observer (LESO). The stability of the compound MFiPISTSMC
strategy is proved by the Lyapunov stability theorem. As a result of the compound MFiPISTSMC
strategy integrating the STSMC strategy, the iPI control strategy and the LESO is proposed to have
excellent performance. Finally, the static characteristic, dynamic characteristic and robustness of the
novel compound MFiPISTSMC strategy are verified by simulation and experimental results.

Keywords: model-free control; super-twisting Sliding Mode Control (STSMC); intelligent
Proportional-Integral (iPI); permanent magnet synchronous motor (PMSM); Linear Extended State
Observer (LESO)

1. Introduction

Due to some advantages, such as simple structure, small volume, high efficiency, and high power
factor, the permanent magnet synchronous motor (PMSM) has been widely used in many applications
such as in aerospace actuation [1], electric vehicles [2,3], and suspended positioning systems [4].

Because of the invention of the PMSM, a multitude of scholars have not stopped studying control
strategies. Many control theories have been widely and effectively applied to the speed regulation
system of the PMSM, which can be roughly divided into two categories: model-related control and
model-free control (MFC). More precisely, for the model-related control, a host of scholars used
the mathematical model of the PMSM to deeply analyze various advanced controllers; examples of
such algorithms include, model predictive control [5], backstepping control [6], nonlinear adaptive
control [7], H∞ robust control [8], and so on. However, the external loads and internal parameters
are variable in the actual working environment. Consequently, the PMSM cannot be accurately
represented by the mathematical model, which bring challenges and troubles to the model-related
control. In recent years, the MFC strategy has been more and more popular. Although the MFC strategy
was introduced only a few years ago, the traditional Proportional-Integral (PI) control strategy, as the
most widely used MFC strategy, has been widely applied in the PMSM speed regulation system [9,10].
However, the traditional PI control strategy may cause the PMSM speed control system to deviate
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from the expected target due to the nonlinearity, time variability, and complexity of the PMSM drives.
Based on an ultra-local model, an intelligent Proportional-Integral (iPI) control strategy was proposed
in reference [11]. The iPI control strategy based on the ultra-local mode has been widely used in the
control of various systems: see, e.g., single link flexible joint manipulator [12], quadrotor vehicle [13],
and laser beam pointing and stabilization [14]. Unfortunately, the iPI control strategy cannot guarantee
that the tracking error of the system tends to zero quickly. To overcome this problem, Reference [15]
integrated the advantages of the MFC strategy, the iPI control strategy and the Sliding Mode Control
(SMC) strategy, a compound iPI-SMC control strategy based on the MFC theory (MFiPISMC) was
proposed, which effectively solves the problem that the iPI control strategy cannot quickly bring the
tracking error to zero.

The SMC strategy has become a popular academic research topic because of its low dependence on
the mathematical model of controlled objects and its strong robustness [16]. On the other hand, the switch
control law of traditional SMC strategy leads to the chattering phenomenon, the MFiPISMC strategy
brings the inherent chattering problem of SMC strategy into the closed loop system. The super-twisting
Sliding Mode Control (STSMC) strategy as a high-order SMC scheme, and can effectively eliminate
the chattering phenomenon [17]. The STSMC scheme has been widely used in many fields such as
the inverted pendulum system [18], unmanned aerial vehicles [19], the photovoltaic system [20],
the brushless doubly fed induction generator [21], and so on. A Linear Extended State Observer
(LESO) was proposed in References [22,23], which originated from Linear Active Disturbance Rejection
Control. The LESO has the advantages of simple structure and efficient estimation, so it has been
studied and applied by many scholars [24–27].

Inspired by previous studies and our previous research [28–30], a novel compound model-free
control strategy with an intelligent Proportional-Integral and super-twisting Sliding Mode Control
(MFiPISTSMC) strategy is proposed. It is worth noting that the proposed MFiPISTSMC strategy is
based on the ultra-local model. The MFiPISTSMC strategy solves the problem that the error cannot
reach zero quickly in the traditional iPI control strategy of the ultra-local mode, and also deals with
the chattering phenomenon of the MFiPISMC strategy. At the same time, the proposed MFiPISTSMC
strategy uses the STSMC scheme to improve the control performance of the switching stage. An LESO
is integrated into the proposed MFiPISTSMC strategy to estimate the unknown uncertain dynamics of
the ultra-local model.

Compared with previous studies, the main contributions of this article can be summarized
as follows:

1. A compound MFiPISTSMC strategy is proposed, which integrates the STSMC strategy, the iPI
control strategy, and the MFC strategy. The STSMC strategy and the iPI control strategy are all
constructed based on the ultra-local model of the PMSM.

2. A novel LESO based on the compound MFiPISTSMC strategy is proposed for the PMSM drives.
The stability of the proposed control strategy is proved by the Lyapunov stability theorem. It will
be shown from the theoretical discussions that the proposed MFiPISTSMC control strategy can
ensure the tracking error of the system tends to zero.

3. The simulation and experimental results show the effectiveness of the proposed model-free hybrid
control strategy.

The remaining parts of this paper are arranged as:
In Section 2, the mathematical model of PMSM and the ultra-local model of PMSM are briefly

presented. The control strategy and stability analysis are given in in Section 3. The results of simulation
and experimental results are shown in Section 4. Finally, concluding observations are contained in
Section 5.

2. Problem Formulation

This section presents the mathematical model of PMSM and the ultra-local model of PMSM.
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The flux linkage equation, electromagnetic torque equation and voltage equation of salient PMSM
are as follows [31]:  φd = Ldid + φ f

φq = Lqiq
(1)

 ud = Rid +
.
φd −ωφq

uq = Riq +
.
φq +ωφd

(2)

Te = 1.5pn(φ f iq(t) + (Ld − Lq)id(t)iq(t)) (3)

When Ld = Lq = L are in this paper, mechanical torque equation is expressed in (4), the dynamic
equation of PMSM can be denoted in (5) [31]. Te − TL = J

.
ω(t) + Bω(t)

Te = 1.5pnφ f iq(t)
(4)

.
ω(t) =

3pnφ f

2J
iq(t) −

B
J
ω(t) −

1
J

TL (5)

The key parameters of PMSM are listed in Table 1.

Table 1. Parameters of the permanent magnet synchronous motor (PMSM).

Parameter Symbol and Unit

Electromagnetic torque Te/N·m
Flux linkage of permanent magnet φ f /Wb

Pole pairs pn/Num
dq-axis inductances Ld, Lq/mH
dq-stator voltages ud, uq/mH

dq-armature currents id(t), iq(t)/V
dq-axis flux linkages φd, φq/Wb

Mechanical rotor angular speed ω(t)/r·s−1

Rotational inertia J/kg·m2

Load torque TL/N·m
Viscous friction coefficient B/N·m·s

Stator resistance R/Ω

According to [11], the general single input single output system can be replaced by the ultra-local
model as:

y(n)(t) = au(t) + F (6)

where y(t) and are the output and input of the ultra-local model, respectively; a is the non-physical
constant parameter; F is the unknown term of the system but also any disturbances. In this paper n = 1
is satisfied, the first-order system (5) can be selected to describe the dynamics of the controlled system.

The system tracking error is usually defined as:

e(t) = yr(t) − y(t) (7)

where yr(t) is the desired output of the system; e(t) is the system tracking error. The purpose of this
paper is to design a stable controller to make the tracking error tend to zero. In this paper, y(t) is
the actual value of the mechanical speed; yr(t) is the given value of the mechanical speed; e(t) is the
tracking error of the mechanical speed.

3. Main Results

In this section, the proposed control strategy will be given. Furthermore, the stability of the
proposed control strategy will be proved by the Lyapunov stability theorem.
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A novel control block diagram of PMSM speed regulation system is based on the proposed
MFiPISTSMC strategy and the LESO with d axis current id(t) = 0 is manifested in Figure 1. The control
goal is to make the actual output y(t) tracking the desired output yr(t). The novel control block
diagram of PMSM speed regulation system consists of a proposed MFiPISTSMC strategy, an LESO,
a current controller, a voltage source inverter, and a PMSM.
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3.1. Design of Unknown Terms Observer

The unknown term of the ultra-local model is estimated by the LESO. For the sake of efficiency
and effectiveness, a second order LESO is selected in this paper.

According to (6), define x1 = y(t) and x2 = F. Equation (6) can be rewritten as:
.
x1 = x2 + au (8)

The second order LESO can be described as [22,23]:
e(t) = Z21 − y(t),

.
Z21 = Z22 − β1e(t) + b0u(t),
.
Z22 = −β2e(t)

(9)

where β1 and β2 are positive constants; b0 is the design parameter; Z21 and Z22 are the estimates of x1

and x2, respectively.

3.2. Design of Novel Controller

Theorem 1 [15]. The iPI control strategy is defined as:

u1(t) =
1
a

(
Kpe(t) + Ki

∫
e(t)dt +

.
yr(t) −Z22

)
(10)

where Kp > 0, Ki > 0, u1(t) is the control law of the iPI control strategy.

Substituting (10) into (6), the error equation can be obtained:

Kpe(t) + Ki

∫
e(t)dt +

.
e(t) + ∆d(t) = 0 (11)

where ∆d(t) is as follows:
∆d(t) = F−Z22 (12)
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According to References [15,32], we can get the iPI control strategy that cannot guarantee
that the tracking error of the system tends to zero quickly. A detailed description can be found in
References [15,32].

The following sliding mode surface is chosen in this paper [33–36]:

s(t) = η1e(t) + η2

∫
e(t)dt (13)

where η1 and η2 are the positive parameters of the sliding mode surface.

Theorem 2. The proposed MFiPISTSMC strategy is designed in the following format:

u(t) = u1(t) + u2(t)

=

 1
a

(
Kpe(t) + Ki

∫
e(t)dt +

.
yr(t) −Z22

)
+ u2(t)

u2(t) = u21(t) + u22(t)
,

(14)

where u2(t)is the control law of the STSMC strategy; u21 is the equivalent control law; u22 is the switching
control law.

In addition, in order to make the control error of the system rapidly zero, according to (6), (7)
and (14), the following equation can be obtained:

.
e(t) + au2 + Kpe(t) + Ki

∫
e(t)dt + ∆d(t) = 0 (15)

Taking derivative of (13), it can be obtained that:

.
s(t) = η1

.
e(t) + η2e(t) (16)

Substituting (15) in (16), the following equation can be obtained:

.
s(t) = η1

(
−au2 −Kpe(t) −Ki

∫
e(t)dt− ∆d(t)

)
+ η2e(t) (17)

Ideally, according to (17) and ∆d(t) = 0, the equivalent control law can be obtained as:

u21 =
1
a

(
−Kpe(t) −Ki

∫
e(t)dt

)
+
η2

η1a
e(t) (18)

In this paper, the switching control strategy of the MFiPISMC strategy is chosen as:

u22 =
1
a
(k1sign(s(t)) + k2s(t)) (19)

where k1 ∈ R+, k2 ∈ R+.
For compensating external disturbance and eliminating the chattering phenomenon caused by

the SMC strategy, the following ST scheme is usually chosen as [17]:

.
s(t) = −k1

∣∣∣s(t)∣∣∣1/2
sign(s(t)) − k2

∫
sign(s(t))dt (20)

sign(s(t)) =


1
0
−1

s(t) > 0,
s(t) = 0,
s(t) < 0

(21)

where k1 and k2 are the positive parameters of the ST scheme.
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Consequently, the switching control law is obtained as:

u22 =
1
a

(
k1

∣∣∣s(t)∣∣∣1/2
sign(s(t)) + k2

∫
sign(s(t))dt

)
(22)

Figure 2 describes the structure diagrams of the proposed MFiPISTSMC strategy.
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3.3. Stability Analysis

Inspired by previous studies [17,37–40], the proof of stability is divided into two steps.
Step 1: The stability of the LESO will be discussed. Laplace transform is carried out for (9), and we

can get:  Z21(s)s = Z22(s) − 2λZ21(s) + 2λy(s) + b0u(s),

Z22(s)s = −λ2Z21(s) + λ2y(s)
Z21(s) =

λ2 + 2λs

(s + λ)2 y(s) +
b0s

(s + λ)2 u(s),

Z22(s) =
λ2s

(s + λ)2 y(s) +
λ2b0

(s + λ)2 u(s)

(23)

where λ is the bandwidth of the system.{
e1(s) = Z21(s) − y(s)

e2(s) = Z22(s) − y(s) − b0u(s)
(24)

According to (23), (24) can be rewritten:
e1(s) =

λ2 + 2λs

(s + λ)2 y(s) +
b0s

(s + λ)2 u(s) − y(s),

e2(s) =
λ2s

(s + λ)2 y(s) +
λ2b0

(s + λ)2 u(s) − y(s)s− b0u(s)
e1(s) = −

s2

(s + λ)2 y(s) +
b0s

(s + λ)2 u(s),

e2(s) = −
s2 + 2λs

(s + λ)2 y(s)s−
s2 + 2λs

(s + λ)2 b0u(s)

(25)
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According to [37], when s→ 0 , we can get se1(s)→ 0 and se2(s)→ 0 , therefore, the LESO
exhibits stability.

Step 2: In what follows, the stability of the proposed MFiPISTSMC strategy will be discussed.

Assumption 1. The value of
∣∣∣∣∆ .

d(t)
∣∣∣∣ has an upper limit, and the estimation error of the LESO satisfies the

following condition: ∣∣∣∣∆ .
d(t)

∣∣∣∣ ≤ Ψ, (26)

where Ψ is a positive constant. The condition (26) shows the estimation error of the LESO is a bounded perturbation.

In order to guarantee the stability of the proposed MFiPISTSMC strategy, we do the following steps:
By substituting (14) into (17), we obtain the following:

.
s(t) = η1

(
−au2 −Kpe(t) −Ki

∫
e(t)dt−∆d(t)

)
+ η2e(t)

= −k1η1
∣∣∣s(t)∣∣∣1/2

sign(s(t)) − k2η1
∫

sign(s(t))dt− η1∆d(t)
(27)

Equation (27) can be shown as:
.
s(t) = −k1η1

∣∣∣s(t)∣∣∣1/2
sign(s(t)) − η1∆d(t) + Φ

.
Φ = −k2η1sign(s(t)) (28)

Defining the following new variables as: x1 = s(t)

x2 = −η1∆d(t) + Φ
.
x1 = −k1η1|x1|

1/2sign(x1) + x2
.
x2 = −k2η1sign(x1) − η1∆

.
d(t)

(29)

The following Lyapunov function is chosen: V = ζTPζ

ζT =
[
|x1|

1/2sign(x1) x2

] (30)

where P is a positive definite matrix which can be selected in accordance with the procedure given
in [39]; V is a quadratic, strict, and robust Lyapunov function.

Actually, according to Assumption 1, we can get:

.
V ≤ −|x1|

1/2ζTXζ (31)

where X is a symmetric and positive definite matrix. We can get
.

V is negative semi-definite. A detailed
description can be found in the Reference [39].

Accordingly, the proposed controller can ensure the stability of the system. Consequently, the proof
of the closed-loop system under the proposed MFiPISTSMC strategy is completed.

4. Simulation and Experimental Results

4.1. Simulink Results

We implement the simulation, which are based on the Matlab/Simulink. The key PMSM parameters
used in the simulation are listed as follows: the stator phase resistance R is 2.875 Ω; the inductance L is
8.5 mH; the magnetic chain of permanent magnets φ is 0.175 Wb; the moment of inertia J is 0.003 kg·m2;
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the viscous damping B is 0.008 N·m·s; the pole pairs pn is 4. The parameters of the MFiPISMC strategy
used in the simulation are listed as follows: Kp = 1; Ki = 1; η1 = 10; η2 = 1; k1 = 10; k2 = 12;
a = 1000. The parameters of the PI strategy used in the simulation are listed as follows: the value of
proportional coefficient set to 0.1; the value of integral coefficient set to 0.5. The parameters of the
proposed MFiPISTSMC strategy used in the simulation are listed as follows: Kp = 1; Ki = 1; η1 = 10;
η2 = 1; k1 = 300; k2 = 100; a = 1000. The parameters of the LESO used in the simulation are listed
as follows: β1 = 20000; β2 = 1500000; b0 = 1000. In order to compare more accurately, the stable
simulation data from 0.2 to 0.5 s are used to perform the following calculations:

Rootmean Square Error (RMSE) =

√∑N

1
e(t)2

i
/N (32)

Maximum Absolute Error (MAE) = Max
∣∣∣ei(t)

∣∣∣ (33)

The PI control strategy and the MFiPISMC strategy are compared with the control strategy
proposed in this study. In order to compare the control performance of various controllers, the reference
speed is set to 100 r/s and the simulation time is set to 0.5 s. Figure 3 and Table 2 compare the
speed response curves of the motor under different control strategies without load starting and stable
operation. Moreover, Figure 4 and Table 3 compare the speed response curves of the motor under
different control strategies with 0.5 N·m load starting and stable operation. As shown in Figure 3a
or Figure 4a, compared with the PI control strategy and MFiPISMC strategy, the adjustment time
controlled by the proposed MFiPISTSMC strategy is the shortest, which indicates that the proposed
MFiPISTSMC strategy has the optimal transient performance. As shown in Tables 2 and 3, compared
with the PI control strategy and MFiPISMC strategy, the RMSE and MAE controlled by the proposed
MFiPISTSMC strategy also are the smallest, which reveal that the proposed MFiPISTSMC strategy
has the optimal control accuracy. From Figure 3b or Figure 4b, we also can obviously conclude that
the chattering phenomenon of the proposed MFiPISTSMC strategy has been eliminated significantly.
Consequently, the proposed MFiPISTSMC strategy has the best steady-state performance.
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Table 2. The comparative results of the speed response curves without load.

Control Strategy Desired Speed (r/s) Settling Time (s) RMSE (r/s) MAE (r/s)

The PI control strategy 100 0.082 0.303 0.632
The MFiPISMC strategy 100 0.071 0.155 0.485

The proposed MFiPISTSMC strategy 100 0.049 0.131 0.243
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Table 3. The comparative results of the speed response curves with load.

Control Strategy Desired Speed (r/s) Settling Time (s) RMSE (r/s) MAE (r/s)

The PI control strategy 100 0.182 0.767 1.547
The MFiPISMC strategy 100 0.075 0.234 0.618

The proposed MFiPISTSMC strategy 100 0.043 0.137 0.312

In order to further verify the anti-disturbance ability of the proposed control strategy, load
disturbances are suddenly changed at 0.5 and 1 s, respectively. Tables 4 and 5 show the comparative
results of load changed suddenly under different control strategies, including speed perturbation,
speed recovery time, and torque adjustment time. Figures 5 and 6 compare the speed response curves
and the torque response curves under different control strategies with the load changed suddenly.
As shown in Tables 4 and 5 and Figures 5 and 6, compared with the PI control strategy and MFiPISMC
strategy, the speed recovery time and torque adjustment time controlled by the proposed MFiPISTSMC
strategy are the shortest, the speed perturbation amplitude controlled by the proposed MFiPISTSMC
strategy is also the smallest, which indicates that the proposed MFiPISTSMC strategy has stronger
robustness and better reliability when subjected to external uncertainties.

Table 4. The comparative results of the load increased suddenly.

Control Strategy
The External Load Becomes 0.5 N·m from 0 N·m

Speed Perturbation
Amplitude (%)

Speed Recovery
Time (s)

Torque Adjustment
Time (s)

The PI control strategy 5.3 0.456 0.012
The MFiPISMC strategy 2.5 0.052 0.005

The proposed MFiPISTSMC strategy 0.4 0.018 0.002

Table 5. The comparative results of the load decreased suddenly.

Control Strategy
The External Load Becomes 0 from 0.5 N·m

Speed Perturbation
Amplitude (%)

Speed Recovery
Time (s)

Torque Adjustment
Time (s)

The PI control strategy 5.6 0.462 0.011
The MFiPISMC strategy 2.9 0.049 0.006

The proposed MFiPISTSMC strategy 0.7 0.012 0.003
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4.2. Experimental Results

To further verify the effectiveness of the proposed method, a cSPACE (Control signal process and
control engineering) based PMSM speed control experimental platform has been applied in this paper.
The cSPACE experimental platform of the PMSM drive system is depicted in Figure 7. The cSPACE
experimental platform consists of a TI TMS320F28335 DSP, a Matlab/Simulink, a SM060R20B30M0AD
PMSM, and a MY1016 DC generator. The cSPACE experimental platform is the software and hardware
platform of fast control prototype and hardware in loop real-time simulation.
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Figure 7. The PMSM experimental platform.

The key PMSM parameters used in the experimentation are listed as follows: the stator phase
resistance R is 0.16 Ω; the inductance L is 0.44 mH; the magnetic chain of permanent magnets φ
is 0.0077 Wb; the moment of inertia J is 0.342 kg·m2

·10−4; the viscous damping B approximately
is zero; the pole pairs pn is 4. The parameters of the proposed MFiPISTSMC strategy used in the
experimentation are listed as follows: Kp = 1; Ki = 0.01; η1 = 1; η2 = 1; k1 = 500; k2 = 10; a = 1000.
The parameters of the LESO used in the experimentation are listed as follows:β1 = 20000; β2 = 1500000;
b0 = 1000. Besides, the saturation limit of u(t) is set to ±10A.

Figure 8 shows the actual speed response curves of tracking 100 r/s and 300 r/s under the PI
control strategy based on the cSPACE experimental platform. Figure 9 shows the actual speed
response curves of tracking 100 r/s and 300 r/s under the proposed MFiPISTSMC strategy based on the
cSPACE experimental platform. Figure 10 and Table 6 show the comparative results of the dynamic
experiments. Because the control strategy is written as discrete form on the experimental platform,
the horizontal coordinates of the experimental results are the sampling points. From the experimental
results presented in Table 6 and Figures 8–10, we can clearly find that the actual speed response
curves of the PMSM using the proposed MFiPISTSMC strategy can track the set speed value more
quickly. The experimental results also reveal that the proposed MFiPISTSMC strategy has the optimal
control accuracy. It is a fact that the proposed MFiPISTSMC strategy has the superior dynamic and
static characteristics.
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When the PMSM is subjected to the external disturbance, the abilities of the PI control strategy and
the proposed MFiPISTSMC strategy to resist the external disturbance are shown in Figures 11 and 12,
respectively. In detailing, we sample 16,000 points in the experiment. The external load current of the
MY1016 DC generator suddenly becomes 200 mA from 0 mA at sampling point 7000 in Figures 11 and 12,
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respectively. The external load current of the MY1016 DC generator suddenly becomes 0 mA from
200 mA at sampling point 13,000 in Figures 11 and 12, respectively. From the experimental results,
it can be concluded that the proposed MFiPISTSMC strategy has strong anti-disturbance ability and
better reliability for suddenly increases and suddenly decreases of load disturbance. It can be clearly
observed that the proposed MFiPISTSMC strategy can conveniently suppress the external disturbances.

Table 6. The comparative results of the dynamic experiments.

Control Strategy

The Results of the Dynamic
Experiments with ωr = 100 r/s

The Results of the Dynamic
Experiments with ωr = 300 r/s

Overshoot
(%)

Adjustment Time
(Sampling Point)

Overshoot
(%)

Adjustment Time
(Sampling Point)

The PI control strategy 54.2 1203 14.2 1150
The proposed MFiPISTSMC strategy 4.5 157 2.3 491
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In summary, the experimental results demonstrate the proposed MFiPISTSMC strategy achieves
superior control performance in the sense of the dynamic characteristic, static characteristic, robustness,
and reliability.

5. Conclusions

In this research, a novel compound MFiPISTSMC strategy based on the ultra-local model is
proposed for the control of the PMSM speed regulation system. The unknown term of the ultra-local
model of PMSM is estimated by the LESO. The Lyapunov approach is used to demonstrate the stability
of the closed-loop system. The proposed compound MFiPISTSMC strategy consists of the STSMC
strategy, the iPI control strategy, and the MFC strategy, which has excellent performance. The static
characteristic, dynamic characteristic, robustness, and reliability of the novel compound MFiPISTSMC
strategy are verified by simulation and experimental results.

In the future, we will introduce the Fractional-order theory into the compound MFiPISTSMC
strategy, which can further improve the control effect.
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